## Rearranging equations

## A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives
Textbook: Pure Year 1, 12.1 Gradients of curves

## Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.


## Examples

Example 1 Make $t$ the subject of the formula $v=u+a t$.

| $v=u+a t$ |  |
| :--- | :--- |
| $v-u=a t$ |  |
| $t=\frac{v-u}{a}$ | $\mathbf{1}$Get the terms containing $t$ on one <br> side and everything else on the other <br> side. |
| $\mathbf{2}$ Divide throughout by $a$. |  |

Example 2 Make $t$ the subject of the formula $r=2 t-\pi t$.

| $r=2 t-\pi t$ | $\mathbf{1}$All the terms containing $t$ are <br> already on one side and everything <br> else is on the other side. <br> $r=t(2-\pi)$ <br> $t=\frac{r}{2-\pi}$ |
| :--- | :--- |
| Factorise as $t$ is a common factor. |  |
| $\mathbf{3} \quad$ Divide throughout by $2-\pi$. |  |

Example 3 Make $t$ the subject of the formula $\frac{t+r}{5}=\frac{3 t}{2}$.

| $\frac{t+r}{5}=\frac{3 t}{2}$ | 1Remove the fractions first by <br> multiplying throughout by 10. <br> $2 t+2 r=15 t$ <br> $2 r=13 t$ |
| :--- | :--- |
| $\mathbf{2}$Get the terms containing $t$ on one <br> side and everything else on the other <br> side and simplify. |  |
| 3Divide throughout by 13. |  |

$$
t=\frac{2 r}{13}
$$

Example $4 \quad$ Make $t$ the subject of the formula $\quad r=\frac{3 t+5}{t-1}$.

| $r=\frac{3 t+5}{t-1}$ | $\mathbf{1}$Remove the fraction first by <br> multiplying throughout by $t-1$. |
| :--- | :--- |
| $r(t-1)=3 t+5$ | $\mathbf{2}$Expand the brackets. |
| $r t-r=3 t+5$ | $\mathbf{3}$Get the terms containing $t$ on one <br> side and everything else on the other <br> side. |
| $r(-3 t=5+r$ | $\mathbf{4}$Factorise the LHS as $t$ is a common <br> factor. |
| $t(r-3)=5+r$ | $\mathbf{5}$Divide throughout by $r-3$. <br> $t=\frac{5+r}{r-3}$ |

## Practice

Change the subject of each formula to the letter given in the brackets.
$1 \quad C=\pi d[d]$
$2 \quad P=2 l+2 w \quad[w]$
$3 D=\frac{S}{T}$
$4 \quad p=\frac{q-r}{t} \quad[t]$
$5 u=a t-\frac{1}{2} t[t]$
$6 \quad V=a x+4 x \quad[x]$
$7 \quad \frac{y-7 x}{2}=\frac{7-2 y}{3}$
[y]
$8 \quad x=\frac{2 a-1}{3-a}$
[a]
$9 \quad x=\frac{b-c}{d}$
[d]
$10 \begin{aligned} & h=\frac{7 g-9}{2+g}\end{aligned} \quad[g]$
$11 e(9+x)=2 e+1$
[e]
$12 y=\frac{2 x+3}{4-x}$

13 Make $r$ the subject of the following formulae.

$$
\begin{array}{lll}
\mathbf{a} \quad A=\pi r^{2} & \text { b } \quad V=\frac{4}{3} \pi r^{3} & \text { c } P=\pi r+2 r \quad \text { d } \\
V=\frac{2}{3} \pi r^{2} h & &
\end{array}
$$

14 Make $x$ the subject of the following formulae.

## 

$$
\mathbf{a} \quad \frac{x y}{z}=\frac{a b}{c d}
$$

$$
\text { b } \quad \frac{4 \pi c x}{d}=\frac{3 z}{p y^{2}}
$$

15 Make $\sin B$ the subject of the formula $\frac{a}{\sin A}=\frac{b}{\sin B}$

16 Make $\cos B$ the subject of the formula $b^{2}=a^{2}+c^{2}-2 a c \cos B$.

## Extend

17 Make $x$ the subject of the following equations.

$$
\begin{array}{ll}
\left.\frac{p}{q}(s x+t)=x-1 \quad \text { b } \quad \frac{p}{q}(a x+2 y)=\frac{3 p}{q^{2}}(x-y)\right)
\end{array}
$$

## Answers

1

$$
d=\frac{C}{\pi}
$$

4

$$
t=\frac{q-r}{p}
$$

7

10

13

15

$y=2+3 x$
$g=\frac{2 h+9}{7-h}$
a $\quad r=\sqrt{\frac{A}{\pi}}$
c $\quad r=\frac{P}{\pi+2}$
a $\quad x=\frac{a b z}{c d y}$
$\sin B=\frac{b \sin A}{a}$
$\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$2 \quad w=\frac{P-2 l}{2} \quad 3 \quad T=\frac{S}{D}$
$5 \quad t=\frac{2 u}{2 a-1} \quad 6 \quad x=\frac{V}{a+4}$
$8 \quad a=\frac{3 x+1}{x+2}$
$9 \quad d=\frac{b-c}{x}$
$11 e=\frac{1}{x+7}$
$12 x=\frac{4 y-3}{2+y}$
b $\quad r=\sqrt[3]{\frac{3 V}{4 \pi}}$
d $r=\sqrt{\frac{3 V}{2 \pi h}}$
b $\quad x=\frac{3 d z}{4 \pi c p y^{2}}$

7

$$
x=\frac{q+p t}{q-p s}
$$

$$
\mathbf{b} \quad x=\frac{3 p y+2 p q y}{3 p-a p q}=\frac{y(3+2 q)}{3-a q}
$$

