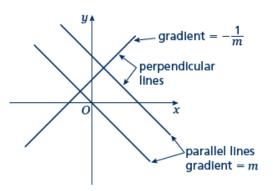
Parallel and perpendicular lines


A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- When lines are parallel they have the same gradient.
- A line perpendicular to the line with equation

y = mx + c has gradient $\frac{1}{m}$.

Examples

Example 1 Find the equation of the line parallel to y = 2x + 4 which passes through the point (4, 9).

y = 2x + 4 m = 2 y = 2x + c	 As the lines are parallel they have the same gradient. Substitute m = 2 into the equation of
$9 = 2 \times 4 + c$ $9 = 8 + c$	 a straight line y = mx + c. 3 Substitute the coordinates into the equation y = 2x + c 4 Simplify and solve the equation.
y = 8 + c $c = 1$ $y = 2x + 1$	5 Substitute $c = 1$ into the equation y = 2x + c

Example 2 Find the equation of the line perpendicular to y = 2x - 3 which passes through the point (-2, 5).

y = 2x - 3 $m = 2$	1 As the lines are perpendicular, the gradient of the perpendicular line
$-\frac{1}{m} = -\frac{1}{2}$	$\frac{1}{m}$.
$y = -\frac{1}{2}x + c$	2 Substitute $m = -\frac{1}{2}$ into $y = mx + c$. 3 Substitute the coordinates (-2, 5) 1
$5 = -\frac{1}{2} \times (-2) + c$	$y = -\frac{1}{2}x + c$ into the equation 4 Simplify and solve the equation.

$$5 = 1 + c$$

$$c = 4$$

$$y = -\frac{1}{2}x + 4$$
5 Substitute $c = 4$ into
$$y = -\frac{1}{2}x + c$$

Example 3 A line passes through the points (0, 5) and (9, -1).Find the equation of the line which is perpendicular to the line and passes through its midpoint.

$$x_{1} = 0, x_{2} = 9, y_{1} = 5 \text{ and } y_{2} = -1$$

$$m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} = \frac{-1 - 5}{9 - 0}$$

$$= \frac{-6}{9} = -\frac{2}{3}$$

$$-\frac{1}{m} = \frac{3}{2}$$

$$\frac{-1}{m} = \frac{3}{2}$$

$$y = \frac{3}{2}x + c$$
Midpoint = $\left(\frac{0 + 9}{2}, \frac{5 + (-1)}{2}\right) = \left(\frac{9}{2}, 2\right)$

$$2 = \frac{3}{2} \times \frac{9}{2} + c$$

$$c = -\frac{19}{4}$$

$$y = \frac{3}{2}x - \frac{19}{4}$$
1 Substitute the coordinates into the maintenance into the equation into the equation.
1 Substitute the coordinates into the maintenance into the equation into the equation.
1 Substitute the coordinates of the midpoint into the equation.
2 Substitute the coordinates of the midpoint into the equation.
3 Substitute the coordinates of the midpoint into the equation.
4 Work out the coordinates of the midpoint into the equation.
5 Substitute the coordinates of the midpoint into the equation.
4 Work out the coordinates of the midpoint into the equation.
5 Substitute the quation.
6 Simplify and solve the equation.
7 Substitute $\frac{c = -\frac{19}{4}}{4}$ into the equation $\frac{y = \frac{3}{2}x + c}{2}$.

Practice

- 1 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
 - ay = 3x + 1(3, 2)by = 3 2x(1, 3)c2x + 4y + 3 = 0(6, -3)d2y 3x + 2 = 0(8, 20)

2 Find the equation of the line perpendicular to $y = \frac{1}{2}x - 3$ which passes through the point (-5, 3).

Hint If m = then the negative reciprocal

3 Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.

			<u>1</u> <u>1</u>	
a	y = 2x - 6 (4, 0)	b	y = 3x + 2	(2, 13)
c	x - 4y - 4 = 0 (5, 15)	d	5y + 2x - 5 = 0	(6,7)

4 In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.

a (4, 3), (-2, -9) **b** (0, 3), (-10, 8)

Extend

5 Work out whether these pairs of lines are parallel, perpendicular or neither.

a	y = 2x + 3 $y = 2x - 7$	b		y = 4x - 3 $4y + x = 2$
d	3x - y + 5 = 0 $x + 3y = 1$	e	2x + 5y - 1 = 0 f y = 2x + 7	2x - y = 6 $6x - 3y + 3 =$

0

6 The straight line L_1 passes through the points A and B with coordinates (-4, 4) and (2, 1), respectively.

a Find the equation of L_1 in the form ax + by + c = 0

The line L_2 is parallel to the line L_1 and passes through the point *C* with coordinates (-8, 3). **b** Find the equation of L_2 in the form ax + by + c = 0

The line L_3 is perpendicular to the line L_1 and passes through the origin.

c Find an equation of L_3

Answers

1		y = 3x - 7		y = -2x + 5		
	c	$y = -\frac{1}{2}x$	d	$y = \frac{3}{2}x + 8$		
2	<i>y</i> = -	-2x - 7				
3				y = 3x + 7		
	c	y = -4x + 35	d	$y = \frac{5}{2}x - 8$		
4	a	$y = -\frac{1}{2}x$	b	y = 2x		
5	a	Parallel	b	Neither	c	Perpendicular
	d	Perpendicular	e	Neither	f	Parallel
6	a	x + 2y - 4 = 0	b	x + 2y + 2 = 0	c	y = 2x

