Parallel and perpendicular lines

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- When lines are parallel they have the same gradient.
- A line perpendicular to the line with equation

$$
y=m x+c \text { has gradient }-\frac{1}{m} .
$$

Examples

Example 1 Find the equation of the line parallel to $y=2 x+4$ which passes through the point $(4,9)$.

$y=2 x+4$ $m=2$ $y=2 x+c$	$\mathbf{1}$As the lines are parallel they have the same gradient.
$9=2 \times 4+c$	
$\mathbf{2}$Substitute $m=2$ into the equation of a straight line $y=m x+c$.	
$9=8+c$ $c=1$ $y=2 x+1$	3 Substitute the coordinates into the equation $y=2 x+c$
$\mathbf{4}$Simplify and solve the equation.	
$\mathbf{5 5}$Substitute $c=1$ into the equation $y=2 x+c$	

Example 2 Find the equation of the line perpendicular to $y=2 x-3$ which passes through the point $(-2,5)$.

$y=2 x-3$ $m=2$	$\mathbf{1}$As the lines are perpendicular, the gradient of the perpendicular line $-\frac{1}{m}=-\frac{1}{2}$ $y=-\frac{1}{2} x+c$ is $-\frac{1}{m}$.
$5=-\frac{1}{2} \times(-2)+c$	$\mathbf{2}$Substitute $m=-\frac{1}{2}$ into $y=m x+c$. $\mathbf{3}$ Substitute the coordinates $(-2,5)$
into the equationSimplify and solve the equation.	

$5=1+c$	$5 \quad$ Substitute $c=4$ into $\quad y=-\frac{1}{2} x+c$.
$c=4$	
$y=-\frac{1}{2} x+4$	

Example 3 A line passes through the points $(0,5)$ and $(9,-1)$.
Find the equation of the line which is perpendicular to the line and passes through its midpoint.

$$
\begin{aligned}
& x_{1}=0, x_{2}=9, y_{1}=5 \text { and } y_{2}=-1 \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-5}{9-0} \\
& =\frac{-6}{9}=-\frac{2}{3} \\
& -\frac{1}{m}=\frac{3}{2} \\
& y=\frac{3}{2} x+c \\
& \text { Midpoint }=\left(\frac{0+9}{2}, \frac{5+(-1)}{2}\right)=\left(\frac{9}{2}, 2\right) \\
& 2=\frac{3}{2} \times \frac{9}{2}+c \\
& c=-\frac{19}{4} \\
& y=\frac{3}{2} x-\frac{19}{4}
\end{aligned}
$$

1 Substitute the coordinates into the equation $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ to work out the gradient of the line.

2 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.

3 Substitute the gradient into the equation $y=m x+c$.

4 Work out the coordinates of the midpoint of the line.

5 Substitute the coordinates of the midpoint into the equation.
6 Simplify and solve the equation.
7 Substitute $^{c=-\frac{19}{4}}$ into the equation $y=\frac{3}{2} x+c$.

Practice

1 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
a $y=3 x+1$
b $\quad y=3-2 x \quad(1,3)$
c $2 x+4 y+3=0 \quad(6,-3)$
d $2 y-3 x+2=0$

edexcel

2 Find the equation of the line perpendicular to $y=\frac{1}{2} x-3$ which passes through the point $(-5,3)$.

Hint

If $m=$ then the negative reciprocal

3 Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.
a $\quad y=2 x-6 \quad(4,0)$
b $y=-\frac{1}{3} x+\frac{1}{2}$
c $\quad x-4 y-4=0 \quad(5,15)$
d $5 y+2 x-5=0$

4 In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.
a $(4,3),(-2,-9)$
b $\quad(0,3),(-10,8)$

Extend

5 Work out whether these pairs of lines are parallel, perpendicular or neither.

a	$y=2 x+3$ $y=2 x-7$	b	$y=3 x$ $2 x+y-3=0$		
		c	$y=4 x-3$ $4 y+x=2$		
d $\quad$$3 x-y+5=0$ $x+3 y=1$	e	$2 x+5 y-1=0$ 			$2 x-y=6$
:---					

0

6 The straight line \mathbf{L}_{1} passes through the points A and B with coordinates $(-4,4)$ and $(2,1)$, respectively.
a Find the equation of \mathbf{L}_{1} in the form $a x+b y+c=0$

The line $\mathbf{L}_{\mathbf{2}}$ is parallel to the line \mathbf{L}_{1} and passes through the point C with coordinates $(-8,3)$.
b Find the equation of \mathbf{L}_{2} in the form $a x+b y+c=0$

The line \mathbf{L}_{3} is perpendicular to the line \mathbf{L}_{1} and passes through the origin.
c Find an equation of \mathbf{L}_{3}

Answers

1
a $\quad y=3 x-7$
c $y=-\frac{1}{2} x$

$$
y=-2 x-7
$$

3

4

5

6
a $y=-\frac{1}{2} x+2 \quad$ b $\quad y=3 x+7$
c $y=-4 x+35$
a $y=-\frac{1}{2} x$
a Parallel
d Perpendicular
a $\quad x+2 y-4=0$
d $y=\frac{5}{2} x-8$
b $\quad y=2 x$
b $\quad y=-2 x+5$
d $y=\frac{3}{2} x+8$
$\begin{array}{llll}\text { b } & \text { Neither } & \text { c } & \text { Perpendicular } \\ \text { e } & \text { Neither } & \text { f } & \text { Parallel }\end{array}$
b $\quad x+2 y+2=0$ c $\quad y=2 x$

