Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations $y=x+1$ and $x^{2}+y^{2}=13$

$x^{2}+(x+1)^{2}=13$	1 Substitute $x+1$ for y into the second equation.
$x^{2}+x^{2}+x+x+1=13$	2 Expand the brackets and simplify.
$2 x^{2}+2 x+1=13$	
	3 Factorise the quadratic equation.
$2 x^{2}+2 x-12=0$	4 Work out the values of x.
$(2 x-4)(x+3)=0$	
So $x=2$ or $x=-3$	5 To find the value of y, substitute both values of x into one of the original equations.
Using $y=x+1$	
When $x=2, y=2+1=3$	
When $x=-3, y=-3+1=-2$	
So the solutions are	6 Substitute both pairs of values of x and y into both equations to check your answers.
$x=2, y=3 \quad$ and $\quad x=-3, y=-2$	
Check:	
equation 1:3 $=2+1 \quad$ YES	
and $-2=-3+1 \quad$ YES	
equation 2: $2^{2}+3^{2}=13 \quad$ YES	

edexcel

and $(-3)^{2}+(-2)^{2}=13$ YES

Pearson

Example 2 Solve $2 x+3 y=5$ and $2 y^{2}+x y=12$ simultaneously.

$x=\frac{5-3 y}{2}$	1 Rearrange the first equation.
$2 y^{2}+\left(\frac{5-3 y}{2}\right) y=12$	2 Substitute $\frac{5-3 y}{2}$ for x into the second equation. Notice how it is easier to substitute for x than for y.
$2 y^{2}+\frac{5 y-3 y^{2}}{2}=12$	3 Expand the brackets and simplify.
$4 y^{2}+5 y-3 y^{2}=24$	4 Factorise the quadratic equation.
$y^{2}+5 y-24=0$	5 Work out the values of y.
$(y+8)(y-3)=0$	6 To find the value of x, substitu
So $y=-8$ or $y=3$	both values of y into one of the original equations.
Using $2 x+3 y=5$	
When $y=-8, \quad 2 x+3 \times(-8)=5, \quad x=14.5$	
When $y=3, \quad 2 x+3 \times 3=5, \quad x=-2$	
So the solutions are $x=14.5, y=-8 \text { and } x=-2, y=3$	7 Substitute both pairs of values of x and y into both equations to check your answers.
Check:	
equation 1: $2 \times 14.5+3 \times(-8)=5 \quad$ YES	
and $2 \times(-2)+3 \times 3=5 \quad$ YES	
equation 2: $2 \times(-8)^{2}+14.5 \times(-8)=12 \mathrm{YES}$	
and $2 \times(3)^{2}+(-2) \times 3=12 \quad$ YES	

Practice

Solve these simultaneous equations.
$1 y=2 x+1$
$x^{2}+y^{2}=10$
$2 y=6-x$
$x^{2}+y^{2}=20$
$3 y=x-3$
$x^{2}+y^{2}=5$
$4 y=9-2 x$
$x^{2}+y^{2}=17$

edexcel

$5 \quad y=3 x-5$
$y=x^{2}-2 x+1$
$6 y=x-5$
$y=x^{2}-5 x-12$
$7 y=x+5$
$x^{2}+y^{2}=25$
$8 y=2 x-1$
$x^{2}+x y=24$
$9 y=2 x$
$y^{2}-x y=8$
$10 \quad 2 x+y=11$
$x y=15$

Extend

$11 x-y=1$
$x^{2}+y^{2}=3$
$12 y-x=2$
$x^{2}+x y=3$

edexcel 쁯

Answers

$1 x=1, y=3$

$$
x=-\frac{9}{5}, y=-\frac{13}{5}
$$

$2 x=2, y=4$ $x=4, y=2$
$3 x=1, y=-2$ $x=2, y=-1$
$4 x=4, y=1$

$$
x=\frac{16}{5}, y=\frac{13}{5}
$$

$5 x=3, y=4$
$x=2, y=1$
$6 \quad x=7, y=2$
$x=-1, y=-6$
$7 x=0, y=5$
$x=-5, y=0$
$8 \quad x=-\frac{8}{3}, y=-\frac{19}{3}$
$x=3, y=5$
$9 x=-2, y=-4$
$x=2, y=4$

$$
10 \begin{aligned}
& x=\frac{5}{2}, y=6 \\
& x
\end{aligned}=3, y=5
$$

$11 x=\frac{1+\sqrt{5}}{2}, y=\frac{-1+\sqrt{5}}{2}$

$$
x=\frac{1-\sqrt{5}}{2}, y=\frac{-1-\sqrt{5}}{2}
$$

edexcel

$12 x=\frac{-1+\sqrt{7}}{2}, y=\frac{3+\sqrt{7}}{2}$

$$
x=\frac{-1-\sqrt{7}}{2}, y=\frac{3-\sqrt{7}}{2}
$$

