Sketching quadratic graphs

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- The graph of the quadratic function $y=a x^{2}+b x+c$, where $a \neq 0$, is a curve called a parabola.
- Parabolas have a line of symmetry and
 a shape as shown.
- To sketch the graph of a function, find the points where the graph intersects the axes.
- To find where the curve intersects the y-axis substitute $x=0$ into the function.
- To find where the curve intersects the x-axis substitute $y=0$ into the function.
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal.
- To find the coordinates of the maximum or minimum point (turning points) of a quadratic curve (parabola) you can use the completed square form of the function.

Examples

Example 1 Sketch the graph of $y=x^{2}$.

O	The graph of $y=x^{2}$ is a parabola. When $x=0, y=0$. $a=1$ which is greater than zero, so the graph has the shape:

Example 2 Sketch the graph of $y=x^{2}-x-6$.

When $x=0, y=0^{2}-0-6=-6$ So the graph intersects the y-axis at $(0,-6)$	$\mathbf{1}$Find where the graph intersects the y-axis by substituting $x=0$.		
When $y=0, x^{2}-x-6=0$	$\mathbf{2}$Find where the graph intersects the x-axis by substituting $y=0$.		
$(x+2)(x-3)=0$	3 Solve the equation by factorising.		
4Solve $(x+2)=0$ and $(x-3)=0$.			
$x=-2$ or $x=3$		\quad	
:---			

Practice

1 Sketch the graph of $y=-x^{2}$.
2 Sketch each graph, labelling where the curve crosses the axes.
a $y=(x+2)(x-1)$
b $\quad y=x(x-3)$
c $y=(x+1)(x$
+5)
3 Sketch each graph, labelling where the curve crosses the axes.

edexcel :

a $\quad y=x^{2}-x-6$
b $\quad y=x^{2}-5 x+4$ c $y=x^{2}-4$
d $y=x^{2}+4 x$
e $\quad y=9-x^{2} \quad$ f $\quad y=x^{2}+2 x-$

4 Sketch the graph of $y=2 x^{2}+5 x-3$, labelling where the curve crosses the axes.

Extend

5 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point.
a $\quad y=x^{2}-5 x+6$
b $\quad y=-x^{2}+7 x-12$
$\mathbf{c} y=-x^{2}+4 x$

6 Sketch the graph of $y=x^{2}+2 x+1$. Label where the curve crosses the axes and write down the equation of the line of symmetry.

edexcel ̊ㅡㄹ

Answers

1

2
a

b

3
a

b
C

f

4

5
a b

c

6

Line of symmetry at $x=-1$.

