Solving quadratic equations by factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose products is *ac*.
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5x^2 = 15x$

$5x^2 = 15x$	1 Rearrange the equation so that all of the terms are on one side of the
$5x^2 - 15x = 0$	equation and it is equal to zero. Do not divide both sides by x as this would lose the solution $x = 0$.
	 2 Factorise the quadratic equation. 5x is a common factor.
5x(x-3) = 0	3 When two values multiply to make zero, at least one of the values must be zero.
So $5x = 0$ or $(x - 3) = 0$	4 Solve these two equations.
Therefore $x = 0$ or $x = 3$	

Example 2 Solve $x^2 + 7x + 12 = 0$

$x^{2} + 7x + 12 = 0$ b = 7, ac = 12	 Factorise the quadratic equation. Work out the two factors of <i>ac</i> = 12 which add to give you <i>b</i> = 7. (4 and 3) Rewrite the <i>b</i> term (7<i>x</i>) using these
$x^2 + 4x + 3x + 12 = 0$	two factors.3 Factorise the first two terms and the last two terms.
x(x+4) + 3(x+4) = 0	5 When two values multiply to make zero, at least one of the values must be zero.
(x+4)(x+3) = 0	6 Solve these two equations.
So $(x + 4) = 0$ or $(x + 3) = 0$	
Therefore $x = -4$ or $x = -3$	

Example 3 Solve $9x^2 - 16 = 0$ $9x^2 - 16 = 0$ (3x + 4)(3x - 4) = 0So (3x + 4) = 0 or (3x - 4) = 0 $x = -\frac{4}{3} \frac{x}{0} = \frac{4}{3}$ $x = \frac{4}{3} \frac{4}{3}$ Solve these two equations. 1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3x)^2$ and $(4)^2$. 2 When two values multiply to make zero, at least one of the values must be zero. 3 Solve these two equations.

Example 4 Solve $2x^2 - 5x - 12 = 0$

b = -5, ac = -24	 Factorise the quadratic equation. Work out the two factors of <i>ac</i> = -24 which add to give you <i>b</i> = -5. (-8 and 3) Rewrite the <i>b</i> term (-5x) using these
So $2x^2 - 8x + 3x - 12 = 0$	 two factors. 3 Factorise the first two terms and the last two terms. 4 (x - 4) is a factor of both terms.
2x(x-4) + 3(x-4) = 0	 5 When two values multiply to make zero, at least one of the values must be zero.
(x-4)(2x+3) = 0	6 Solve these two equations.
So $(x-4) = 0$ or $(2x+3) = 0$	
$x = 4 \text{or} x = -\frac{3}{2}$	

Practice

1

So	lve		
a	$6x^2 + 4x = 0$	b	$28x^2 - 21x = 0$
c	$x^2 + 7x + 10 = 0$	d	$x^2 - 5x + 6 = 0$
e	$x^2 - 3x - 4 = 0$	f	$x^2 + 3x - 10 = 0$
g	$x^2 - 10x + 24 = 0$	h	$x^2 - 36 = 0$
i	$x^2 + 3x - 28 = 0$	j	$x^2 - 6x + 9 = 0$
k	$2x^2 - 7x - 4 = 0$	1	$3x^2 - 13x - 10 = 0$

2 Solve

a $x^2 - 3x = 10$

b $x^2 - 3 = 2x$

c	$x^{2} +$	5x =	24
C	\mathcal{A}	$\mathcal{I}_{\mathcal{N}}$	2

- e x(x+2) = 2x + 25
- **g** $x(3x+1) = x^2 + 15$
- **d** $x^2 42 = x$ **f** $x^2 - 30 = 3x - 2$
- **h** 3x(x-1) = 2(x+1)

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

• Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$.

Examples

Example 5 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$x^2 + 6x + 4 = 0$	1 Write $x^2 + bx + c = 0$ in the form
$(x+3)^2 - 9 + 4 = 0$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = 0$
$(x+3)^2 - 5 = 0$ $(x+3)^2 = 5$	 2 Simplify. 3 Rearrange the equation to work out <i>x</i>. First, add 5 to both sides. 4 Square root both sides.
$(x+3) = 5$ $x+3 = \pm\sqrt{5}$	Remember that the square root of a value gives two answers.5 Subtract 3 from both sides to solve the equation.
$x = \pm \sqrt{5} - 3$	6 Write down both solutions.
So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$	

Example 6 Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form.

$2x^{2} - 7x + 4 = 0$ $2\left(x^{2} - \frac{7}{2}x\right) + 4 = 0$ $2\left[\left(x - \frac{7}{4}\right)^{2} - \left(\frac{7}{4}\right)^{2}\right] + 4 = 0$	1 Before completing the square write $ax^2 + bx + c$ in the form $a\left(x^2 + \frac{b}{a}x\right) + c$ 2 Now complete the square by writing $x^2 - \frac{7}{2}x$ in the form $\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2$
	3 Expand the square brackets.
$2\left(x - \frac{7}{4}\right)^{2} - \frac{49}{8} + 4 = 0$ $2\left(x - \frac{7}{4}\right)^{2} - \frac{17}{8} = 0$	 4 Simplify. (continued on next page) 5 Rearrange the equation to work out x. First, add ¹⁷/₈ to both sides.
$2\left(x-\frac{7}{4}\right)^2 = \frac{17}{8}$	6 Divide both sides by 2.
$\left(x - \frac{7}{4}\right)^2 = \frac{17}{16}$	 7 Square root both sides. Remember that the square root of a value gives two answers. 7
$x - \frac{7}{4} = \pm \frac{\sqrt{17}}{4}$	 8 Add ⁷/₄ to both sides. 9 Write down both the solutions.
$x = \pm \frac{\sqrt{17}}{4} + \frac{7}{4}$	
$x = \frac{7}{4} - \frac{\sqrt{17}}{4} \text{ or } x = \frac{7}{4} + \frac{\sqrt{17}}{4}$	

Practice

3 Solve by completing the square.

a $x^2 - 4x - 3 = 0$

b $x^2 - 10x + 4 = 0$

- **c** $x^2 + 8x 5 = 0$ **d** $x^2 - 2x - 6 = 0$ e $2x^2 + 8x - 5 = 0$
- Solve by completing the square. 4
 - **a** (x-4)(x+2) = 5
 - **b** $2x^2 + 6x 7 = 0$
 - **c** $x^2 5x + 3 = 0$

f $5x^2 + 3x - 4 = 0$

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

• Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for *a*, *b* and *c*.

Examples

Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

a = 1, b = 6, c = 4 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 1 Identify a, b and c and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2a, not just part of it. 2 Substitute a = 1, b = 6, c = 4 into the formula. $x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$ 3 Simplify. The denominator is 2, but this is only because a = 1. The denominator will not always be 2. $x = \frac{-6 \pm \sqrt{20}}{2}$ 4 Simplify $\sqrt{20}$. $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$ $x = \frac{-6 \pm 2\sqrt{5}}{2}$ $x = -3 \pm \sqrt{5}$ So $x = -3 - \sqrt{5}$ or $x = \sqrt{5} - 3$ 5 Simplify by dividing numerator and denominator by 2. **6** Write down both the solutions.

$a = 3, b = -7, c = -2$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 Identify <i>a</i> , <i>b</i> and <i>c</i> , making sure you get the signs right and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2 <i>a</i> , not just part of it.
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$	2 Substitute $a = 3, b = -7, c = -2$ into the formula.
$x = \frac{7 \pm \sqrt{73}}{2(3)}$ $x = \frac{7 \pm \sqrt{73}}{6}$	 3 Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2. 4 Write down both the solutions.
So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$	

Example 8 Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

Practice

5 Solve, giving your solutions in surd form. **a** $3x^2 + 6x + 2 = 0$ **b** $2x^2 - 4x - 7 = 0$

6 Solve the equation
$$x^2 - 7x + 2 = 0$$

Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where *a*, *b* and *c* are integers.
7 Solve $10x^2 + 3x + 3 = 5$
Give your solution in surd form.
Hint
Get all terms onto one side of the equation.

Extend

- 8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.
 - **a** 4x(x-1) = 3x 2
 - **b** $10 = (x+1)^2$
 - **c** x(3x-1) = 10

Answers

- $x = 0 \text{ or } x = -\frac{2}{3}$ **b** $x = 0 \text{ or } x = \frac{3}{4}$ 1 a x = -5 or x = -2x = 2 or x = 3d c x = -1 or x = 4x = -5 or x = 2f e $\mathbf{g} \quad x = 4 \text{ or } x = 6$ h x = -6 or x = 6x = -7 or x = 4i x = 3i $x = \frac{-\frac{1}{2}}{2}$ or x = 4 $x = -\frac{2}{3}$ or x = 5k 1 **a** x = -2 or x = 5**b** x = -1 or x = 32 x = -8 or x = 3**d** x = -6 or x = 7c e x = -5 or x = 5x = -4 or x = 7f
 - **g** $x = -3 \text{ or } x = 2^{\frac{1}{2}}$ **h** $x = -\frac{1}{3} \text{ or } x = 2$

3 **a**
$$x = 2 + \sqrt{7}$$
 or $x = 2 - \sqrt{7}$ **b** $x = 5 + \sqrt{21}$ or $x = 5 - \sqrt{21}$
c $x = -4 + \sqrt{21}$ or $x = -4 - \sqrt{21}$ **d** $x = 1 + \sqrt{7}$ or $x = 1 - \sqrt{7}$
e $x = -2 + \sqrt{6.5}$ or $x = -2 - \sqrt{6.5}$ **f** $x = \frac{-3 + \sqrt{89}}{10}$ or $x = \frac{-3 - \sqrt{89}}{10}$

4 **a**
$$x = 1 + \sqrt{14}$$
 or $x = 1 - \sqrt{14}$ **b** $x = \frac{-3 + \sqrt{23}}{2}$ or $x = \frac{-3 - \sqrt{23}}{2}$
c $x = \frac{5 + \sqrt{13}}{2}$ or $x = \frac{5 - \sqrt{13}}{2}$

5 **a**
$$x = -1 + \frac{\sqrt{3}}{3}$$
 or $x = -1 - \frac{\sqrt{3}}{3}$ **b** $x = 1 + \frac{3\sqrt{2}}{2}$ or $x = 1 - \frac{3\sqrt{2}}{2}$

6
$$x = \frac{7 + \sqrt{41}}{2}$$
 or $x = \frac{7 - \sqrt{41}}{2}$

7
$$x = \frac{-3 + \sqrt{89}}{20}$$
 or $x = \frac{-3 - \sqrt{89}}{20}$

8 a
$$x = \frac{7 + \sqrt{17}}{8}$$
 or $x = \frac{7 - \sqrt{17}}{8}$

b
$$x = -1 + \sqrt{10}$$
 or $x = -1 - \sqrt{10}$
c $x = -1^{\frac{2}{3}}$ or $x = 2$

