

Completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x+q)^2 + r$
- If $a \neq 1$, then factorise using a as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^2 + 6x - 2$

$$x^{2} + 6x - 2$$

$$= (x + 3)^{2} - 9 - 2$$

$$= (x + 3)^{2} - 11$$
1 Write $x^{2} + bx + c$ in the form
$$\left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$
2 Simplify

Example 2 Write $2x^2 - 5x + 1$ in the form $p(x+q)^2 + r$

$2x^2 - 5x + 1$	1 Before completing the square write $ax^2 + bx + c$ in the form
	$a\left(x^2 + \frac{b}{a}x\right) + c$
	2 Now complete the square by writing
$= 2\left(x^2 - \frac{5}{2}x\right) + 1$	$x^2 - \frac{5}{2}x$ in the form
	$\left(x+\frac{b}{2}\right)^2-\left(\frac{b}{2}\right)^2$
$= 2\left[\left(x - \frac{5}{4}\right)^2 - \left(\frac{5}{4}\right)^2\right] + 1$	3 Expand the square brackets – don't
	forget to multiply $\left(\frac{5}{4}\right)^2$ by the factor of 2
$= 2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} + 1$	4 Simplify

$= 2\left(x - \frac{5}{4}\right)^2 - \frac{17}{8}$	

Practice

1 Write the following quadratic expressions in the form $(x+p)^2+q$

a
$$x^2 + 4x + 3$$

b
$$x^2 - 10x - 3$$

c
$$x^2 - 8x$$

d
$$x^2 + 6x$$

e
$$x^2 - 2x + 7$$

$$f x^2 + 3x - 2$$

2 Write the following quadratic expressions in the form $p(x+q)^2 + r$

a
$$2x^2 - 8x - 16$$

b
$$4x^2 - 8x - 16$$

c
$$3x^2 + 12x - 9$$

d
$$2x^2 + 6x - 8$$

3 Complete the square.

a
$$2x^2 + 3x + 6$$

b
$$3x^2 - 2x$$

c
$$5x^2 + 3x$$

d
$$3x^2 + 5x + 3$$

Extend

4 Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$.

Answers

1 **a**
$$(x+2)^2-1$$

c
$$(x-4)^2-16$$

e
$$(x-1)^2+6$$

2 a
$$2(x-2)^2-24$$

c
$$3(x+2)^2-21$$

$$2\left(x+\frac{3}{4}\right)^2+\frac{39}{8}$$

c
$$5\left(x+\frac{3}{10}\right)^2-\frac{9}{20}$$

4
$$(5x+3)^2+3$$

b
$$(x-5)^2-28$$

d
$$(x+3)^2-9$$

$$\mathbf{f} \qquad \left(x + \frac{3}{2}\right)^2 - \frac{17}{4}$$

b
$$4(x-1)^2-20$$

$$\mathbf{d} \qquad 2\left(x + \frac{3}{2}\right)^2 - \frac{25}{2}$$

b
$$3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}$$

$$\mathbf{d} \qquad 3\left(x + \frac{5}{6}\right)^2 + \frac{11}{12}$$