Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $a x^{2}+b x+c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is $a c$.
- An expression in the form $x^{2}-y^{2}$ is called the difference of two squares. It factorises to $(x-y)(x+y)$.

Examples

Example 1 Factorise $15 x^{2} y^{3}+9 x^{4} y$

$15 x^{2} y^{3}+9 x^{4} y=3 x^{2} y\left(5 y^{2}+3 x^{2}\right)$	The highest common factor is $3 x^{2} y$. So take $3 x^{2} y$ outside the brackets and then divide each term by $3 x^{2} y$ to find the terms in the brackets

Example 2 Factorise $4 x^{2}-25 y^{2}$

$4 x^{2}-25 y^{2}=(2 x+5 y)(2 x-5 y)$	This is the difference of two squares as the two terms can be written as $(2 x)^{2}$ and $(5 y)^{2}$

Example 3 Factorise $x^{2}+3 x-10$

$b=3, a c=-10$	$\mathbf{1}$Work out the two factors of $a c=-10$ which add to give $b=3$ $(5$ and -2$)$ So $x^{2}+3 x-10=x^{2}+5 x-2 x-10$ Rewrite the b term $(3 x)$ using these two factors		
$=x(x+5)-2(x+5)$			
$=\left(\begin{array}{l}\text { Factorise the first two terms and the } \\ \text { last two terms } \\ (x+5) \text { is a factor of both terms }\end{array}\right.$			
$=(x+5)(x-2)$		\quad	
:---			

Example 4 Factorise $6 x^{2}-11 x-10$

Example 5 Simplify $\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}$

$\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}$	1 Factorise the numerator and the denominator
For the numerator: $b=-4, a c=-21$	2 Work out the two factors of $a c=-21$ which add to give $b=-4$ (-7 and 3)
So $x^{2}-4 x-21=x^{2}-7 x+3 x-21$	3 Rewrite the b term ($-4 x$) using these two factors 4 Factorise the first two terms and the last two terms $5(x-7)$ is a factor of both terms
$=x(x-7)+3(x-7)$	6 Work out the two factors of $a c=18$ which add to give $b=9$ (6 and 3)
$=(x-7)(x+3)$	7 Rewrite the b term ($9 x$) using these two factors
For the denominator:	8 Factorise the first two terms and the last two terms
$b=9, a c=18$	$9(x+3)$ is a factor of both terms
So $2 x^{2}+9 x+9=2 x^{2}+6 x+3 x+9$	$10(x+3)$ is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

edexcel

$$
=2 x(x+3)+3(x+3)
$$

$$
=(x+3)(2 x+3)
$$

So
$\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}=\frac{(x-7)(x+3)}{(x+3)(2 x+3)}$
$=\frac{x-7}{2 x+3}$

edexcel

Practice

1 Factorise.
a $\quad 6 x^{4} y^{3}-10 x^{3} y^{4}$
b $\quad 21 a^{3} b^{5}+35 a^{5} b^{2}$
c $\quad 25 x^{2} y^{2}-10 x^{3} y^{2}+15 x^{2} y^{3}$

2 Factorise

Hint

Take the highest common factor outside the bracket.
a $\quad x^{2}+7 x+12$
b $\quad x^{2}+5 x-14$
c $x^{2}-11 x+30$
d $x^{2}-5 x-24$
e $\quad x^{2}-7 x-18$
f $\quad x^{2}+x-20$
g $\quad x^{2}-3 x-40$
h $x^{2}+3 x-28$

3 Factorise
a $36 x^{2}-49 y^{2}$
b $\quad 4 x^{2}-81 y^{2}$
c $\quad 18 a^{2}-200 b^{2} c^{2}$

4 Factorise
a $\quad 2 x^{2}+x-3$
b $\quad 6 x^{2}+17 x+5$
c $\quad 2 x^{2}+7 x+3$
d $9 x^{2}-15 x+4$
e $\quad 10 x^{2}+21 x+9$
f $12 x^{2}-38 x+20$

5 Simplify the algebraic fractions.
a $\frac{2 x^{2}+4 x}{x^{2}-x}$
b $\frac{x^{2}+3 x}{x^{2}+2 x-3}$
c $\frac{x^{2}-2 x-8}{x^{2}-4 x}$
d $\frac{x^{2}-5 x}{x^{2}-25}$
e $\frac{x^{2}-x-12}{x^{2}-4 x}$
f $\frac{2 x^{2}+14 x}{2 x^{2}+4 x-70}$

6 Simplify
a $\frac{9 x^{2}-16}{3 x^{2}+17 x-28}$
b $\frac{2 x^{2}-7 x-15}{3 x^{2}-17 x+10}$
c $\frac{4-25 x^{2}}{10 x^{2}-11 x-6}$
d $\frac{6 x^{2}-x-1}{2 x^{2}+7 x-4}$

Extend

7 Simplify $\sqrt{x^{2}+10 x+25}$

8 Simplify $\frac{(x+2)^{2}+3(x+2)^{2}}{x^{2}-4}$

Answers

1 a $2 x^{3} y^{3}(3 x-5 y)$
b $\quad 7 a^{3} b^{2}\left(3 b^{3}+5 a^{2}\right)$
c $5 x^{2} y^{2}(5-2 x+3 y)$
$2 \mathbf{a} \quad(x+3)(x+4)$
c $\quad(x-5)(x-6)$
e $\quad(x-9)(x+2)$
d $(x-8)(x+3)$

- $(x-9)(x+2)$
f $\quad(x+5)(x-4)$
g $\quad(x-8)(x+5)$
h $(x+7)(x-4)$

3 a $(6 x-7 y)(6 x+7 y)$
b $\quad(2 x-9 y)(2 x+9 y)$
c $2(3 a-10 b c)(3 a+10 b c)$
$4 \quad \mathbf{a} \quad(x-1)(2 x+3)$
b $\quad(3 x+1)(2 x+5)$
c $\quad(2 x+1)(x+3)$
d $(3 x-1)(3 x-4)$
e $\quad(5 x+3)(2 x+3)$
f $2(3 x-2)(2 x-5)$
$5 \quad \mathbf{a} \quad \frac{2(x+2)}{x-1}$
c $\frac{x+2}{x}$
e $\frac{x+3}{x}$
b $\frac{x}{x-1}$
d $\frac{x}{x+5}$
f $\frac{x}{x-5}$
$6 \quad \mathbf{a} \frac{3 x+4}{x+7}$
b $\frac{2 x+3}{3 x-2}$
c $\frac{2-5 x}{2 x-3}$
d $\frac{3 x+1}{x+4}$
$7 \quad(x+5)$
$8 \frac{4(x+2)}{x-2}$

