Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- $\quad a^{m} \times a^{n}=a^{m+n}$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $a^{0}=1$
- $a^{\frac{1}{n}}=\sqrt[n]{a}$ i.e. the nth root of a
- $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
- $a^{-m}=\frac{1}{a^{m}}$
- The square root of a number produces two solutions, e.g. $\sqrt{16}= \pm 4$.

Examples

Example 1 Evaluate 10°

$10^{0}=1$	Any value raised to the power of zero is equal to 1

Example 2 Evaluate $9^{\frac{1}{2}}$

| $9^{\frac{1}{2}}=\sqrt{9}$ |
| :--- | :--- |
| $=3$ |\quad Use the rule $a^{\frac{1}{n}}=\sqrt[n]{a}$

Example 3 Evaluate $27^{\frac{2}{3}}$

$27^{\frac{2}{3}}$	$=(\sqrt[3]{27})^{2}$			
	$=3^{2}$			
	$=9$	\quad	1	Use the rule$a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$ 2\quad Use $\sqrt[3]{27}=3$
:---	:---			

edexcel

Example 4 Evaluate 4^{-2}

$$
\begin{array}{rl|l}
4^{-2} & =\frac{1}{4^{2}} \\
& =\frac{1}{16} & \begin{array}{l}
\text { 1 Use the rule } \\
a^{-m}=\frac{1}{a^{m}} \\
\mathbf{2} \\
\text { Use } 4^{2}=16
\end{array}
\end{array}
$$

Example 5 Simplify $\frac{6 x^{5}}{2 x^{2}}$

$\frac{6 x^{5}}{2 x^{2}}=3 x^{3}$	$6 \div 2=3$ and use the rule give $\frac{x^{5}}{x^{2}}=x^{5-2}=x^{3}$ $a^{n}$$=a^{m-n}$
	to

Example 6 Simplify $\frac{x^{3} \times x^{5}}{x^{4}}$

$$
\begin{aligned}
\frac{x^{3} \times x^{5}}{x^{4}} & =\frac{x^{3+5}}{x^{4}}=\frac{x^{8}}{x^{4}} \\
& =x^{8-4}=x^{4}
\end{aligned}
$$

1 Use the rule $a^{m} \times a^{n}=a^{m+n}$

2 Use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$

Example $7 \quad$ Write $\frac{1}{3 x}$ as a single power of x

$\frac{1}{3 x}=\frac{1}{3} x^{-1}$	Use the rule $\frac{1}{a^{m}}=a^{-m}$
	fraction $\frac{1}{3}$ remains unchanged that the

Example 8 Write $\frac{4}{\sqrt{x}}$ as a single power of x

edexcel

| $\frac{4}{\sqrt{x}}$ $=\frac{4}{x^{\frac{1}{2}}}$
 $=4 x^{-\frac{1}{2}}$ | $\mathbf{1}$ Use the rule$a^{\frac{1}{n}}=\sqrt[n]{a}$
 2 |
| ---: | :--- | :--- |
| | Use the rule $\frac{1}{a^{m}}=a^{-m}$ |

Practice

1 Evaluate.
$\begin{array}{cc}\text { a } & 14^{0} \\ x^{0} & \end{array}$
b $\quad 3^{0}$
c $\quad 5^{0}$
d

2 Evaluate.
a $\quad 49^{\frac{1}{2}}$
$16^{\frac{1}{4}}$
b $64^{\frac{1}{3}}$
c $125^{\frac{1}{3}}$ d

3 Evaluate.

$$
\begin{array}{ll}
\text { a } & 25^{\frac{3}{2}} \\
16^{\frac{3}{4}}
\end{array}
$$

b $8^{\frac{5}{3}}$
c $49^{\frac{3}{2}} \quad \mathbf{d}$

4 Evaluate.
a
$6^{-2} \quad 5^{-2}$
b $\quad 4^{-3}$
c $\quad 2^{-5} \quad \mathbf{d}$

5 Simplify.

$$
\begin{aligned}
& \text { a } \quad \frac{3 x^{2} \times x^{3}}{2 x^{2}} \\
& \text { c } \quad \frac{3 x \times 2 x^{3}}{2 x^{3}} \\
& \text { e } \frac{y^{2}}{y^{\frac{1}{2}} \times y} \\
& \text { g } \frac{\left(2 x^{2}\right)^{3}}{4 x^{0}} \\
& \text { b } \frac{10 x^{5}}{2 x^{2} \times x} \\
& \text { f } \\
& \text { Watch out! } \\
& \text { d } \\
& \text { Remember that any } \\
& \text { value raised to the } \\
& \text { power of zero is } 1 \text {. } \\
& \text { This is the rule } a^{0} \\
& =1 \text {. } \\
& \text { h } \\
& \frac{7}{x^{-2} \times x^{3}}
\end{aligned}
$$

6 Evaluate.
a $\quad 4^{-\frac{1}{2}}$
b $27^{-\frac{2}{3}}$
c $\quad 9^{-\frac{1}{2}} \times 2^{3}$
$16^{\frac{1}{4}} \times 2^{-3}$
e $\left(\frac{9}{16}\right)^{-\frac{1}{2}}$
f $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$

7 Write the following as a single power of x.
a $\frac{1}{x}$
b $\quad \frac{1}{x^{7}}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt[3]{x}}$
$\begin{array}{cc}\text { c } & \sqrt[4]{x} \\ & \\ & \frac{1}{\sqrt[3]{x^{2}}}\end{array}$

edexcel 뼟

8 Write the following without negative or fractional powers.
a $\quad x^{-3}$
b $\quad x^{0}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{2}}$
c $x^{\frac{1}{5}}$
f $x^{-\frac{3}{4}}$

9 Write the following in the form $a x^{n}$.
a $\quad 5 \sqrt{x}$
d $\frac{2}{\sqrt{x}}$
b $\frac{2}{x^{3}}$
c $\frac{1}{3 x^{4}}$
e $\frac{4}{\sqrt[3]{x}}$
f 3

Extend

10 Write as sums of powers of x.

$$
\mathbf{a} \quad \frac{x^{5}+1}{x^{2}}
$$

b $x^{2}\left(x+\frac{1}{x}\right)$
c
$x^{-4}\left(x^{2}+\frac{1}{x^{3}}\right)$

Answers

1

2

3

4
a $\quad 1$
b $\quad 1$
c $1 \mathbf{d} \quad 1$
a 7
b 4
c $\quad 5 \mathrm{~d} \quad 2$
$\begin{array}{ll}\text { a } & 125\end{array}$
b $\quad 32$
c 34 d
a $\frac{1}{25}$
$\frac{1}{36}$
b $\quad \frac{1}{64}$
c $\quad \frac{1}{32} \quad \mathbf{d}$

5

$$
\begin{array}{cccc}
& \frac{3 x^{3}}{2} & \text { b } & 5 x^{2} \\
\text { a } & & & \frac{y}{2 x^{2}} \\
\text { c } & 3 x & \text { d } & \\
\text { e } & y^{\frac{1}{2}} & \text { f } & c^{-3} \\
\text { g } & 2 x^{6} & \text { h } & x
\end{array}
$$

a $\frac{1}{2}$
b $\quad \frac{1}{9}$
c $\frac{8}{3}$
d $\frac{1}{4}$
e $\frac{4}{3}$
f $\frac{16}{9}$

7
a x^{-1}
b $\quad x^{-7}$
c $x^{\frac{1}{4}}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{3}}$
f $x^{-\frac{2}{3}}$

8
a $\frac{1}{x^{3}}$
b $\quad 1$
c $\sqrt[5]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt{x}}$
f $\frac{1}{\sqrt[4]{x^{3}}}$
a $5 x^{\frac{1}{2}}$
b $\quad 2 x^{-3}$
c $\frac{1}{3} x^{-4}$
d $2 x^{-\frac{1}{2}}$
e $\quad 4 x^{-\frac{1}{3}}$
f $3 x^{0}$

edexcel 뿣

$$
\begin{array}{lllll}
\mathbf{a} & x^{3}+x^{-2} & \mathbf{b} & x^{3}+x & \mathbf{c} \\
x^{-2}+x^{-7}
\end{array}
$$

